
Bessel functions of two variables: some power series and plots

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 2229

(http://iopscience.iop.org/0305-4470/34/11/315)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 2229–2234 www.iop.org/Journals/ja PII: S0305-4470(01)14520-8

Bessel functions of two variables: some power series
and plots

F Alberto Grünbaum
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Abstract
For a finite reflection group G there is a rich theory developed by Dunkl,
Heckman and Opdam leading to the notion of a commuting set of Bessel
differential operators. These systems play an important role in the study of
Calogero–Moser systems and other problems of physical interest. When G

acts on the line one recovers the usual Bessel function with a well known power
series expansion at the origin. We obtain some such expansions in the case of
G = A2 acting in the plane and we use these to produce plots of some of these
functions.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

AMS classification scheme numbers: 33C80, 44A15, 42B10

Introduction

Special functions such as Gauss’ hypergeometric series and the Bessel functions have
played a crucial role in mathematical physics for a very long time, and many branches
of engineering and technology provide good examples of such use. The appearance of
symbolic/numerical/graphics packages such as Macsyma, Maple, Mathematica and others
has put plots of these functions at the fingertips of many users in applied fields.

In the last ten years, the groundbreaking work of Dunkl, Heckman and Opdam, de Jeu and
others has produced a rich theory of Bessel functions of several variables which extends in a
natural way the one-dimensional situation. There are also several versions of Gauss’ function in
the case of several variables, and a large program dealing with polynomials has been developed
by Macdonald, Koornwinder and Cherednik, as well as others. These functions have arisen at
times in connection with integrable systems or as spherical functions for appropriate symmetric
spaces. One can wonder if these relatively recent mathematical objects will eventually have an
impact on technology comparable to the one-variable case, and how much they will penetrate
the engineering literature.

There are at least three interrelated (and rather long-winded) answers that I can think of:

(a) This will happen if interesting ‘down-to-earth’ problems ever get solved in terms of these
new functions. In the one-dimensional case these applications are very well known in
mathematical physics, but they reach into many other areas. We just point out that in
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probability theory they give the (non-trivial part of the) natural analogue of the Gaussian
kernel when the real line is replaced by the integers. For this and many more uses of
Bessel functions, see [F].

(b) The amount of heavy-going mathematical sophistication needed to go through this new
material makes it unlikely that enough ‘applied math’ people will take the time to learn
about these new tools and test their applicability. Whereas in the case of one variable the
theory developed after (or hand-in-hand with) the applications, in the general case the only
applications that come to mind are the Calogero–Moser models of interacting particles.

(c) Maybe a few plots will not hurt. After all the best way to see the usefulness of sines and
cosines—as well as Bessel functions, elliptic functions, and many other such gems—is
to view a few graphs of them. Keep in mind that whether we like it or not, more and
more engineering students will be trained in front of a screen with increasing graphical
capabilities.

The goal of this paper is rather modest. I want to show some of these plots and hopefully
provoke someone into doing a better job. Given the quality of the graphs that I show, this
should not be too much of a challenge. I have not seen any such graphs in the literature or
even some of the power series expressions that I will use to compute with. It is clear that for
computational purposes eventually one would like something smarter than power series, like
piecewise rational approximation or similar things. This can wait until we see whether these
new functions get used enough so as to warrant such an effort.

The eigenvalue problem

On the plane with coordinates (a, b) consider the operators L1 and L2 given by
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Here k is an arbitrary parameter, and it is related to the one in [O1], denoted here by k0, by
k = 3(1 − k0)k0.

These operators are invariant under the operations (1) b goes into −b, as well as (2) (a, b)

goes into (−a/2 + (
√

3/2)b, (
√

3/2)a + b/2). The first operation is a reflection across the a

axis, the second one a reflection across the axis given by the vector (−√
3, 1). The same is

true if one considers one more reflection, across the axis making an angle of −60◦ with the a

axis. There is then a three-fold symmetry, and since these reflections generate a group of six
elements (the symmetric group on three symbols) the full group of symmetries has order six.
The operators L1, L2 correspond to the fundamental invariants for the group A2 in question.

The operators commute and one can define the Bessel function as the function made
symmetric by adding six terms of the form

f (a, b, s1, s2) = es1a+s2b(1 + small at infinity)

that solves the system

L1(f ) = λ1f and L2(f ) = λ2f.

This clearly requires λ1 = s2
1 + s2

2 and λ2 = s3
1 − 3s1s

2
2 .
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A very careful referee pointed out that this asymptotic form of the Bessel function is, in
general, still conjectural. The relation connecting (λ1, λ2) and (s1, s2) depends on this very
natural conjecture.

Put a = r cos t and b = r sin t and put x = cos 3t and make the analogous change of
variables on the spectral side s1 = β cos s, s2 = β sin s, y = cos 3s. For later use, introduce
p as any root of the equation

k = − 1
3 (4p2 − 12p).

In terms of the parameter k0 in [O1] we have

p = 3
2 (1 ±

√
1 + k0(k0 − 1)) k0 = 1

2 ± 1
6

√
16p(p − 3) + 9.

Conjugate the resulting operators by the factor

rp(1 − x2)p/6

i.e. define Li by

rp(1 − x2)p/6 Li = Li rp(1 − x2)p/6

to get new operators Li (i = 1, 2) given by
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Consider now the resulting eigenvalue problem

L1 f = β2f

L2 f = β3yf.

It is easy to see that this admits solutions of the form

1 +
∑

cijklr
2i (r3x)jβ2k(β3y)l

with cijkl = cklij .
The plots in figure 1 are produced from this power series which is completely consistent

with the symmetrized asymptotic form discussed earlier.
In particular we get the well known fact that the Bessel function is symmetric in the

interchange between ‘spatial’ and ‘spectral’ variables. This is then a ‘trivial’ or ‘basic’ instance
of the bispectral property discussed in [DG] but for systems of partial differential operators.
In this connection it is pleasing to see that the relations

ad3(Li )(r
2) = 0 i = 1, 2

and

ad4(Li )(r
3x) = 0 i = 1, 2

hold in this case. Here r2 and r3x act as multiplication operators as in [DG].
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p=-19/2,k=-475/3 p=-5/2,k=-55/3

p=-3/2,k=-9 p=1/2,k=5/3

Figure 1. Functions of x, r given by the series 1 +
∑

cijkl r
2i (r3x)j β2k(β3y)l as well as their

product with the conjugating factor rp(1 − x2)p/6. The first four plots do not include this factor,
and the last six do.

If we are in the simpler case when β = y = 1 then we have solutions of the form

1 +
∑

cij r
2i+3j xj

to the equations

L1 f = f L2 f = f.

For this case we have found a simple expression for the coefficients cij , namely

cij = �(p)

�(p/3)

3i�(p/3 + i + j)

22j+2i i!j ! �(p + 2i + 3j)

and this will be used in the plots of figure 1. These plots, made for different values of p, give
an indication of f for x = cos 3θ in (−1, 1) and r in (0, 1).

To get closer to the true Bessel functions we still need to multiply these expressions by
the conjugating factor

rp(1 − x2)p/6
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p=1/2,k=5/3 p=5,k=-40/3

p=-1/2,k=-7/3 p=-1/8,k=-25/48

p=-1/20,k=-61/300 p=-3/2,k=-9

Figure 1. (Continued)
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used above. To bring this into full agreement with the definition in [O1] one still needs to
divide by the function I introduced in page 341 of [O1]. This would bring in an extra factor
which is a power of r6(1 − x2).

For convenience we plot both the function of x, r given by the series above as well as their
product with this conjugating factor. The first four plots do not include this factor, and the last
six do.

E Opdam [O2] has mentioned to me that M de Jeu has made some relevant computations,
and I have received some notes from de Jeu [dJ2] who has obtained other expressions which
could be used in producing plots of the Bessel functions. There are also expressions for those
Bessel functions in [O] that could be used for plotting purposes.
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